IL-18 Surrogate Cytokine Agonists (SCAs): **Overcoming Limitations of IL-18 Cancer Immunotherapy**

Raphael Trenker, Sandro Vivona, Priyanka Balasubrahmanyam, Ethan Jung, Verenice Paredes, Shelly Xiao, Kim Tran, Zhenya Koliesnik, Helena Silva, David Rosen, Deepti Rokkam, Paul Joseph Aspuria, Martin Oft, Patrick Lupardus

Synthekine

1505 O'Brien Dr, Menlo Park, CA, 94025, USA

Overview

Cytokines are key regulators of the immune system and important targets for both immuno-oncology as well as autoimmune diseases, but their therapeutic use has been limited due to dose-limiting toxicities¹. IL-18 is a pro-inflammatory cytokine capable of activating a broad spectrum of immune cells including innate myeloid and adaptive lymphoid compartment resulting in interferon gamma secretion and type I response amplification². Recombinant IL-18 has been evaluated for the treatment of cancer in both preclinical studies and clinical trials^{3,4}. In clinical trials IL-18 has shown good tolerability but modest efficacy possibly due to inhibition by IL-18 binding protein (BP)³⁻⁵. Here we describe bispecific, VHH-based surrogate cytokine agonists (SCAs) capable of signaling through the IL-18 receptor while bypassing the IL-18BP inhibition mechanism and overcoming IL-18's notoriously poor drug-like properties. We believe IL-18 SCAs show potential for development of cytokine therapeutics with improved efficacy and

SCA-mediated IL-18 Receptor Dimerization as an Approach to Escape Inhibition via IL-18BP D IL-18R/IL-18 Signaling Complex and IL-18 sequestration by IL-18BP SCA-induced signaling **IL-18R**β **IL-18R**α **IL-18R**β **IL-18R**β IL-18R α IL-18R α **Dual VHH** Flexible **IL-18** linker **SCA** IL-18BP

Figure 1: IL-18 is a pro-inflammatory cytokine produced by various cell types. Together with IL-12, IL-18 triggers the release of IFN-γ from NK- and CD8⁺ T-cells and thereby boosts both innate and adaptive anti-cancer immune responses.

Figure 2: (a) IL-18 induces the formation of an active ternary complex with IL-18 Receptor α and Receptor β (IL-18R α and IL-18R β)⁶. Activation causes secretion of the IL-18 Binding Protein (IL-18BP), a decoy-receptor that prevents signaling through the IL-18R through IL-18 sequestration^{5,7}. (b) Our Surrogate Cytokine Agonists (SCAs) are bispecific, dual-VHHs connected by a flexible linker and can induce active receptor dimers while bypassing inhibition through IL-18BP. PDB codes: 3WO4, 7AI7

"Med Chem" Approach to Discovery of SCAs at Synthekine

Figure 3: (a) "Med Chem" approach overview to discovery of SCAs at Synthekine from Llama immunization to in vitro screening and tuning. (b) Overview of dual-VHH SCA-panel generation from individual VHHs. (c) Biophysical funnel that guides selection of VHHs for a functional screening panel of SCAs.

Figure 4: (a) 168 IL-18 SCAs with intermediate VHH linker length were screened for activity in an IFN-γ release assay using human PBMCs isolated from healthy donors. PBMCs were incubated for 24 hours with IL-18/IL-18 SCA in the presence of 10 ng/ml IL-12. IFN-γ

Figure 5: Human PBMCs were incubated for 48 hours with 10 nM IL-18 or 100 nM of selected IL-18 SCAs in the presence of 10 ng/mL IL-12 and variable concentrations of IL-

concentration in the supernatant was measured by MSD. (b) Four selected SCAs with various inter-VHH linkers were tested for activity in the same IFN- γ release assay on human PBMCs.

18BP. IFN- γ concentrations were measured by MSD.

Days Post PBMC Transfer

plots of mice over days post PBMC

transfer.

Day 8 Post PBMC Transfer

antibody Fc fragment (SCA1-Fc) or PEGylated (SCA1-PEG) and activity was compared to unmodified SCA1 via IFN-y release assay using human CD8⁺ T-cell blasts and PBMCs as described in Figure 4.

References:

105)

- 1. Saxton, Glassmann & Garcia, Nature Reviews Drug Discover7 22, 21-37 (2023)
- 2. Ihim et al., Front Immunol. 2022; 13: 919973
- 3. Herzyk et al., *Toxicologic Pathology*, 31:554–561, 2003
- 4. Robertson et al., Clin Cancer Res 2006;12(14)

5. Zhou et al., Nature 2020; 583(7817): 609–614 6. Tsutsumi et al., Nature Communications 2014 Dec 15:5:5340 7. Detry, Sam et al. JBC 2022 Volume 298, Issue 5, 101908 8. Carroll et al., PLoS ONE 2008Sep 26;3(9):e3289