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Background

Bispecific antibodies such as bispecific T cell engagers (TCEs) have the potential to transform 

cancer treatment, however only a subset of patients obtain deep and durable responses. TCEs 

show potent anti-tumor activity by redirecting T cells to tumor cells expressing the targeted antigen. 

Despite these advancements, combining these immunotherapies with complementary strategies is 

critical to unlock their full potential. 

Interleukin-2 (IL-2) promotes the proliferation and effector function of T cells. High-dose IL-2 

monotherapy can induce complete responses in cancer patients, but its clinical application is 

severely limited by acute vascular toxicities , notably capillary leak syndrome and severe 

hypotension via the systemic activation of lymphocytes and natural killer (NK) cells. IL-2 activates 

lymphocytes and NK cells through the intermediate-affinity dimeric IL-2 receptor (IL-2Rβɣ, 

composed of CD122/CD132). In contrast, certain lymphocytes such as antigen-activated T-cells 

exhibit increased sensitivity to IL-2 due to their expression of the high-affinity trimeric IL-2 receptor 

(IL-2Rabg, composed of CD25/CD122/CD132). To avoid systemic lymphocyte and NK cell 

activation, but maintain anti-tumor efficacy, we have developed a novel pegylated, α/β-IL-2 agonist 

(STK-012) engineered for preferential binding to the IL-2R⍺βɣ receptor, which is highly upregulated 

on antigen-activated T-cells. 

Methods and Results

We show that the murine surrogate of STK-012, mSTK-012, is effective in various syngeneic solid 

tumor models without inducing acute vascular toxicities. mSTK-012 led to enhanced expansion of 

tumor antigen-specific CD25+PD-1+CD8+ T cells both systemically and within the tumor 

microenvironment, resulting in complete responses and durable tumor immune memory with mSTK-

012 monotherapy. 

Furthermore, a mouse tumor model resistant to CD19 targeting TCEs was developed. We 

demonstrate that STK-012, in combination with an anti-CD3/CD19 TCE, rescued suboptimal TCE 

anti-tumor efficacy. 

ABSTRACT

ABSTRACT #682

STK-012 rescues anti-tumor activity of a suboptimal dose of a CD19/CD3 bispecific T cell engager 
in a subcutaneous CD19+ Raji lymphoma model

Summary

1. STK-012 targets activated, CD25+ T cells, avoiding toxicity derived from activation of the majority of lymphocytes, in particular non-

activated T cells and NK cells

2. mSTK-012 retains anti-tumor efficacy while avoiding IL-2 capillary leak syndrome (CLS) and lethality

3. mSTK-012 significantly increases tumor infiltrating T cells (TILs), CD25+ TILs and tumor-antigen specific T cells compared to IL-2 and 

non-⍺-IL-2

4. STK-012 enhances the efficacy an anti-CD19/CD3 T cell engager in a solid Raji lymphoma model.

Currently, STK-012 is in clinical trials in first line non-small cell lung cancer (NSCLC) patients (NCT05098132) in combination with 

pembrolizumab and chemotherapy. Data will be presented as a Late Breaking Abstract #1345: Initial Phase 1a/1b Results of STK-

012, an ⍺/β IL-2 Receptor Biased Partial Agonist, with Pembrolizumab, Pemetrexed, and Carboplatin in 1L PD-L1 Negative Non-

Squamous NSCLC

These findings highlight the potential of STK-012 to overcome key limitations of the next wave immunotherapies by selectively 

expanding and activating antigen-specific T cells while avoiding typical IL-2 systemic toxicities. 
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Figure 6. (A) Model and treatment 

schema of NSG mice implanted with Raji 

cells and human primary T cells 

transferred. Mice were then treated b.i.w. 

with either PBS, PEG-WT-hIL-2, mSTK-

012 ± Blinatumomab. (B) Tumor volume 

of mice (n=9) with indicated treatments. 
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Figure 3. mSTK-012  controls CT-26 and MC-38 

tumors. A. Model and treatment schema of Balb/c 

or C57BL/6 mice implanted with CT-26 or MC38 

cells and treated q.o.d. with mIL-2, non-𝛼-IL-2 (q.w.) 

or mSTK-012. (B,C) Tumor volume of (B) CT-26 

and (C) MC-38. D,E.  Immunofluorescence of MC-

38 tumors taken down at the end of the study. 

Figure 1. 

A. C57BL/6 mice treated with mIL-2, mIL-2-PEG, non-⍺-IL-2-PEG, and mSTK-012. (B) 

Survival and (C) lung weights taken at the end of the study. IHC of lungs from day 3 

with (D) NK cell and (E) T cell quantification. (F) Representative image of lungs with 

CD3 (red), NK1.1 (green), and MPO (blue). V – blood vessel
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Figure 2. 

A. Model and treatment schema of cynomolgus monkeys treated with non-⍺-IL-2 PEG 
or STK-012. (B) pSTAT5 on peripheral blood T cells (CD25- and CD25+) (C) Lung 
weights on day 16. (D) Schema to assess (E) lung infiltration of NK cells, neutrophils, 

CD8 T cells, and CD11b+ myeloid. V- blood vessel.
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cells and human primary T cells 
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6/9 CR

pSTAT5 on T cells

Non-⍺-IL-2-PEG 

STK-012

Figure 3. mSTK-012  controls CT-26 and MC-38 

tumors. A. Model and treatment schema of Balb/c 

or C57BL/6 mice implanted with CT-26 or MC38 

cells and treated q.o.d. with mIL-2, non-𝛼-IL-2 (q.w.) 

or mSTK-012. (B,C) Tumor volume of (B) CT-26 

and (C) MC-38. D.  Immunofluorescence of MC-38 

tumors taken down at the end of the study. 

Figure 1. 

A. C57BL/6 mice treated with mIL-2, mIL-2-PEG, non-⍺-IL-2-PEG, and mSTK-012. 

(B) Survival and (C) lung weights taken at the end of the study. IHC of lungs from 

day 3 with (D) NK cell and (E) T cell quantification. (F) Representative image of lungs 

with CD3 (red), NK1.1 (green), and MPO (blue). V – blood vessel

Figure 5. (A) Model and treatment 

schema of Balb/c mice implanted with 

CT26. Mice were then treated q.o.d. with 

either PBS, anti-mPD1/mVEGF, or mSTK-

012 ± anti-mPD1/mVEGF. Doses 
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(n=9) with indicated treatments. (C) Day 

22 tumor volumes. Median ± interquartile 

range.  
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Figure 2. 

A. Model and treatment schema of cynomolgus monkeys treated with 

non--IL-2 PEG or STK-012. (B) pSTAT5 on peripheral blood T cells 

(CD25- and CD25+) (C) Lung weights on day 16.. (D) Schema to assess 

(E) lung infiltration of NK cells, neutrophils, and CD8. V- blood vessel.
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Figure 6. (A) Model and treatment 

schema of NSG mice implanted with Raji 

cells and human primary T cells 

transferred. Mice were then treated b.i.w. 

with either PBS, PEG-WT-hIL-2, mSTK-

012 ± Blinatumomab. (B) Tumor volume 

of mice (n=9) with indicated treatments. 
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Non-⍺-IL-2-PEG 
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Figure 3. mSTK-012  controls CT-26 and MC-38 

tumors. A. Model and treatment schema of Balb/c 

or C57BL/6 mice implanted with CT-26 or MC38 

cells and treated q.o.d. with mIL-2, non-𝛼-IL-2 (q.w.) 

or mSTK-012. (B,C) Tumor volume of (B) CT-26 

and (C) MC-38. D.  Immunofluorescence of MC-38 

tumors taken down at the end of the study. 

Figure 1. 

A. C57BL/6 mice treated with mIL-2, mIL-2-PEG, non-⍺-IL-2-PEG, and mSTK-012. 

(B) Survival and (C) lung weights taken at the end of the study. IHC of lungs from 

day 3 with (D) NK cell and (E) T cell quantification. (F) Representative image of lungs 

with CD3 (red), NK1.1 (green), and MPO (blue). V – blood vessel

Figure 5. (A) Model and treatment 

schema of Balb/c mice implanted with 

CT26. Mice were then treated q.o.d. with 

either PBS, anti-mPD1/mVEGF, or mSTK-

012+ anti-mPD1/mVEGF. Doses 
administered were suboptimal in 

monotherapy. (B) Tumor volume of mice 

(n=9) with indicated treatments. (C) Day 

22 tumor volumes. Median ± interquartile 

range.  
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Figure 2. 

A. Model and treatment schema of cynomolgus monkeys treated with 

non--IL-2 PEG or STK-012. (B) pSTAT5 on peripheral blood T cells 

(CD25- and CD25+) (C) Lung weights on day 16.. (D) Schema to assess 

(E) lung infiltration of NK cells, neutrophils, and CD8. V- blood vessel.
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